Green's function, resolvent, Parseval equality of differential operator with block-triangular matrix coefficients
نویسندگان
چکیده
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملFactorization of Block Triangular Matrix Functions with Off-diagonal Binomials
Factorizations of Wiener–Hopf type are considered in the abstract framework of Wiener algebras of matrix-valued functions on connected compact abelian groups, with a non-archimedean linear order on the dual group. A criterion for factorizability is established for 2 × 2 block triangular matrix functions with elementary functions on the main diagonal and a binomial expression in the off-diagonal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2014
ISSN: 1846-3886
DOI: 10.7153/oam-08-32